Page Not Found
Page not found. Your pixels are in another canvas.
A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.
Page not found. Your pixels are in another canvas.
This is a page not in th emain menu
Published:
This post will show up by default. To disable scheduling of future posts, edit config.yml and set future: false.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Short description of portfolio item number 1
Short description of portfolio item number 2 
Published in 2020 International Joint Conference on Neural Networks (IJCNN), 2020
Hyperspectral images (HSIs) are susceptible to various noise factors leading to the loss of information, and the noise restricts the subsequent HSIs object detection and classification tasks. In recent years, learning-based methods have demonstrated their superior strengths in denoising the HSIs. Unfortunately, most of the methods are manually designed based on the extensive expertise that is not necessarily available to the users interested. In this paper, we propose a novel algorithm to automatically build an optimal Convolutional Neural Network (CNN) to effectively denoise HSIs. Particularly, the proposed algorithm focuses on the architectures and the initialization of the connection weights of the CNN. The experiments of the proposed algorithm have been well-designed and compared against the state-of-the-art peer competitors, and the experimental results demonstrate the competitive performance of the proposed algorithm in terms of the different evaluation metrics, visual assessments, and the computational complexity.
Recommended citation: Liu, Y., Sun, Y., Xue, B., & Zhang, M. (2020, July). Evolving Deep Convolutional Neural Networks for Hyperspectral Image Denoising. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE. https://ieeexplore.ieee.org/abstract/document/9207509/
Published in IEEE Transactions on Evolutionary Computation, 2021
However, most ENAS algorithms require intensive computational resource, which is not necessarily available to the users interested. Performance predictors are a type of regression models which can assist to accomplish the search, while without exerting much computational resource. Despite various performance predictors have been designed, they employ the same training protocol to build the regression models: 1) sampling a set of DNNs with performance as the training dataset, 2) training the model with the mean square error criterion, and 3) predicting the performance of DNNs newly generated during the ENAS. In this paper, we point out that the three steps constituting the training protocol are not well though-out through intuitive and illustrative examples. Furthermore, we propose a new training protocol to address these issues, consisting of designing a pairwise ranking indicator to construct the training target, proposing to use the logistic regression to fit the training samples, and developing a differential method to building the training instances. To verify the effectiveness of the proposed training protocol, four widely used regression models in the field of machine learning have been chosen to perform the comparisons on two benchmark datasets. The experimental results of all the comparisons demonstrate that the proposed training protocol can significantly improve the performance prediction accuracy against the traditional training protocols.
Recommended citation: Sun, Y., Sun, X., Fang, Y., Yen, G. G., & Liu, Y. (2021). A novel training protocol for performance predictors of evolutionary neural architecture search algorithms. IEEE Transactions on Evolutionary Computation, 25(3), 524-536. https://ieeexplore.ieee.org/abstract/document/9336721/
Published in TNNLS, 2021
Deep Neural Networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labour intensive because of the trial-and-error process, and also not easy to realize due to the rare expertise in practice. Neural Architecture Search (NAS) is a type of technology that can design the architectures automatically. Among different methods to realize NAS, Evolutionary Computation (EC) methods have recently gained much attention and success. Unfortunately, there has not yet been a comprehensive summary of the EC-based NAS algorithms. This paper reviews over 200 papers of most recent EC-based NAS methods in light of the core components, to systematically discuss their design principles as well as justifications on the design. Furthermore, current challenges and issues are also discussed to identify future research in this emerging field.
Recommended citation: Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G. G., & Tan, K. C. (2020). A survey on evolutionary neural architecture search. arXiv preprint arXiv:2008.10937. https://arxiv.org/pdf/2008.10937
Published:
This is a description of your talk, which is a markdown files that can be all markdown-ified like any other post. Yay markdown!
Published:
This is a description of your conference proceedings talk, note the different field in type. You can put anything in this field.
Undergraduate course, University 1, Department, 2014
This is a description of a teaching experience. You can use markdown like any other post.
Workshop, University 1, Department, 2015
This is a description of a teaching experience. You can use markdown like any other post.